Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm
نویسندگان
چکیده
Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.
منابع مشابه
SYMBIOTIC ORGANISMS SEARCH AND HARMONY SEARCH ALGORITHMS FOR DISCRETE OPTIMIZATION OF STRUCTURES
In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap i...
متن کاملFeedforward neural network training using intelligent global harmony search
Harmony search algorithm is a meta-heuristic optimization method imitating the music improvisation process, where musicians improvise their instruments’ pitches searching for a perfect state of harmony. First, an improved harmony search algorithm is presented using the concept of swarm intelligence. Next, it is employed for training feedforward neural networks for three benchmark classification...
متن کاملMemetic cooperative coevolution of Elman recurrent neural networks
Cooperative coevolution decomposes an optimisation problem into subcomponents and collectively solves them using evolutionary algorithms. Memetic algorithms provides enhancement to evolutionary algorithms with local search. Recently, the incorporation of local search into a memetic cooperative coevolution method has shown to be efficient for training feedforward networks on pattern classificati...
متن کاملImproved Cuckoo Search Algorithm for Feedforward Neural Network Training
The cuckoo search algorithm is a recently developed meta-heuristic optimization algorithm, which is suitable for solving optimization problems. To enhance the accuracy and convergence rate of this algorithm, an improved cuckoo search algorithm is proposed in this paper. Normally, the parameters of the cuckoo search are kept constant. This may lead to decreasing the efficiency of the algorithm. ...
متن کاملA Generalized Feedforward Neural Network Architecture and Its Training Using Two Stochastic Search Methods
Shunting Inhibitory Artificial Neural Networks (SIANNs) are biologically inspired networks in which the synaptic interactions are mediated via a nonlinear mechanism called shunting inhibition, which allows neurons to operate as adaptive nonlinear filters. In this article, The architecture of SIANNs is extended to form a generalized feedforward neural network (GFNN) classifier. Two training algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016